Current TES Capabilities in TRNSYS

Nate Blair

Feb. 20-21, 2003

Agenda

- Quick overview of TRNSYS
- Review of current SolarPaces models
- Potential Other Models appropriate for CSP TES
- Review of Current Project Proposal
- Discussion

What is TRNSYS?

- Algebraic and differential equation solver.
- Library of common "energy system" components.
- Routines for input of weather and time-dependent forcing functions.
- Method for adding user-written components.
- Suite of utility programs.

Solver-Library Communication

TRNSYS Concepts

- Modular approach
 - Large problem = Σ several smaller problems

General formulation

- Entire problem reduced to:
 - Formulating mathematical models.
 - Describing interconnections.

System Definition

- System = set of components
 - Each component represents a process
- Components are connected to accomplish a specified task
- Simulate system performance by simulating the performance of the individual components.

Components

Fortran subroutines

• Generic formulation

Choose them from a "black box" library

Solar-Side of SEGS 6 System Drawing in IISiBat

Steam Turbine-Side of SEGS 6 System Drawing in IISiBat

Combined Solar And Steam Systems in IISiBat

Available Components

- Three General Types of Components
 - Utility Components
 - ex: data readers, printers, plotters
 - Equipment Components
 - ex: chillers, solar collectors, pumps, fans
 - Physical Phenomena Components
 - ex: psychrometrics, radiation processors, steam properties

Standard Components

- ◆ Thermal Storage
 - Stratified Fluid Storage Tank
 - Rock Bed
 - Algebraic (Plug Flow) Tank
 - Variable Volume Tank
 - Detailed Stratified Fluid Storage
 Tank

STEC TRNSYS Library

- Large Number of Components
- •Reusable
- •Able to configure different Systems with same components
- Created by DNR and Sandia
- •Upgraded to new release of IISIBat 3 (the interface) and TRNSYS 15

Thermocline Storage Modeling

- Existing Excel model for this thermocline storage at Sandia by Jim Pacheco
- In Summer 2000:
 - I compared Excel results with standard TRNSYS rockbed model (Type 10).
 - Converted the Excel model to FORTRAN as a TRNSYS component.
 - Compared both components with Pacheco's Excel model

Thermocline Profiles cond=0,loss=0,66 nodes,dt=0.001

Thermocline Profiles cond=0,loss=0,66 nodes,dt=0.5

Other Potential Storage Models

- TESS Geothermal Heat Pump Component Library:
 - Buried Horizontal Pipes (Simple and Detailed)
 - U-Tube Vertical Ground Heat Exchangers
 - Tube-in-Tube Vertical Ground Heat Exchangers
- TESS Storage Tank Component Library:
 - Vertical Cylindrical Tank
 - Horizontal Cylindrical Tank
 - Spherical Tank
 - Rectangular Tank

Other Potential Storage Models

- Transsolar Models (Stuttgart):
 - ◆ Seasonal Ground Heat Storage (Multiport Pit Storage Model) (L. Mazarella)
 - Multiport Tank Storage Model (H. Drück)
 - ◆ ICEPIT Pit Storage Model for Heat and Cold Storage (M. Hornberger)

Other Potential Storage Models

- Various PCM TRNSYS Models
 - Other very large scale (acquifer size) models

 Continuing to do a literature search for existing, appropriate models

Discussion

